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Abstract We present a novel connectivity index for (molecular) graphs, called
sum-connectivity index and give several basic properties for this index, especially
lower and upper bounds in terms of graph (structural) invariants. It appears that this
and the original Randić connectivity index that we call product-connectivity index
are highly intercorrelated molecular descriptors, the value of the correlation coeffi-
cient being 0.991 for trees representing lower alkanes. We determine the unique tree
with fixed numbers of vertices and pendant vertices with the minimum value of the
sum-connectivity index, and trees with the minimum, second minimum and third min-
imum, and the maximum, second maximum and third maximum values of this index.
Additionally, we discuss the properties of this novel connectivity index for a class of
trees representing acyclic hydrocarbons.

Keywords Randić connectivity index · Sum-connectivity index · Product-
connectivity index · Zagreb indices · Molecular graphs · Lower and upper bounds

1 Introduction

In 1975, Randić proposed a structural descriptor called branching index [1] that later
became well-known Randić connectivity index, which is the most used molecular
descriptor in QSPR and QSAR [e.g., 2–6]. The name connectivity index that replaced
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the original Randić term branching index has been suggested by Kier as stated by
Randić [7]. The first paper in which the Randić connectivity index was used in QSAR
appeared soon after the original publication, also in [8]. Mathematicians too exhibited
considerable interest in the properties of the Randić connectivity index [e.g., 9–16].

The Randić connectivity index has also evolved into several variants [5–7,17],
including the concept of overall connectivity by Bonchev [18], and even the semi-
empirical formulation [5]. After Estrada introduced the edge-connectivity index [19],
the Randić connectivity index was occasionally called the vertex-connectivity index
[20,21]. Several people in view of the successful applications of the Randić connectiv-
ity index in QSPR and QSAR gave a physicochemical interpretation of this molecular
descriptor [e.g., 4–6,22–25].

The Randić connectivity index has been extended as the general Randić connec-
tivity index and general zeroth-order Randić connectivity index, and then the Zagreb
indices appear to be the special cases of them [13,26]. The Zagreb indices have been
introduced in 1972 in the report of Gutman and Trinajstić on the topological basis of
the π -electron energy [27]—two terms appeared in the topological formula for the
total π -energy of alternant hydrocarbons, which were in 1975 used by Gutman et al.
[28] as branching indices, denoted by M1 and M2, and later employed as molecular
descriptors in QSPR and QSAR [e.g., 29,30]. The name Zagreb indices instead of
the term branching indices was first used by Balaban et al. [31]. Mathematical and
computational properties of Zagreb indices have also been considered [e.g., 32–37].
In due course also emerged variants of the Zagreb indices [e.g., 38–40].

In this report, we give some basic properties, especially lower and upper bounds
in terms of other graph invariants, of a novel variant of the connectivity index that
we call the sum-connectivity index. We determine the unique tree with fixed num-
bers of vertices and pendant vertices with the minimum value of the sum-connectivity
index, and trees with the minimum, second minimum and third minimum, and the
maximum, second maximum and third maximum values of this index. We discuss the
properties of the sum-connectivity index for molecular graphs representing hydrocar-
bons with emphasis on molecular trees. In our exposition we will use the terminology
and apparatus of (chemical) graph theory [e.g., 41–43].

2 Definitions

For a simple graph G with vertex-set V (G) and v ∈ V (G), �(v) denotes the set of
its (first) neighbors in G and the degree of v is dv = |�(v)|. The Randić connectivity
index [1] R = R(G) of G is defined as

R = R(G) =
∑

uv∈E(G)

(dudv)
−1/2

where E(G) is the edge-set of G.
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A novel connectivity index χ = χ(G), that we call the sum-connectivity index, is
defined as

χ = χ(G) =
∑

uv∈E(G)

(du + dv)
−1/2.

Recall that the first Zagreb index M1 = M1(G) and the second Zagreb index M2 =
M2(G) [27,28,32,33,38] of the graph G are given by

M1 = M1(G) =
∑

u∈V (G)

d2
u ,

M2 = M2(G) =
∑

uv∈E(G)

dudv.

Note that the first Zagreb index may also be given as

M1 = M1(G) =
∑

uv∈E(G)

(du + dv)

because

∑

uv∈E(G)

(du + dv) = 1

2

∑

u∈V (G)

∑

v∈�(u)

du + 1

2

∑

v∈V (G)

∑

u∈�(v)

dv =
∑

u∈V (G)

d2
u .

We call R(G) and χ(G) the product-connectivity index and the sum-connectivity
index of G, respectively. These two molecular descriptors are highly intercorrelated
quantities; for example, the value of the correlation coefficient is 0.99088 for 136 trees
representing the lower alkanes taken from Ivanciuc et al. [44].

Let Pn and Sn be respectively the path and the star with n vertices. Let Kn be the
complete graph with nvertices. Note that a path is a tree with two vertices of degree one
and all the other vertices of degree two, a star is a tree with one vertex being adjacent
to all the other vertices and a complete graph is a simple graph in which every pair of
distinct vertices is adjacent. A bipartite graph G is a graph whose vertex-set V can be
partitioned into two subsets V1 and V2 such that every edge of G connects a vertex in
V1 and a vertex in V2. The graph G ∪ H denotes the vertex-disjoint union of graphs G
and H . Let G be the complement of the graph G. The complement G of G is a simple
graph which has V (G) as its vertex-set and in which two vertices are adjacent if and
only if they are not adjacent in G. A pendant vertex is a vertex of degree one.

3 Bounds for the sum-connectivity indices of general graphs

Proposition 1 Let G be a graph without pendant vertices. Then χ(G) ≥ R(G) with
equality if and only if all non-isolated vertices have degree two.
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Proof For any edge uv of G, dudv ≥ 2(du +dv)−4 ≥ du +dv and thus χ(G) ≥ R(G)

with equality if and only if dudv = du + dv for every edge uv of G, i.e., du = dv = 2
for every edge uv of G. ��

Note that Proposition 1 is not true for graphs with pendant vertices. For the path
Pn with n ≥ 3, χ(Pn) = 2√

3
+ n−3

2 < R(Pn) = 2√
2

+ n−3
2 .

Proposition 2 Let G be a graph with m ≥ 1 edges. Then

χ(G) ≥ m
√

m√
M1(G)

with equality if and only if du + dv is a constant for every edge uv of G.

Proof Since x−1/2 is a strictly convex function for x > 0, we have

∑

uv∈E(G)

(du + dv)
−1/2

m
≥

⎛

⎝
∑

uv∈E(G)

du + dv

m

⎞

⎠
−1/2

and then

χ(G) ≥ m

⎛

⎝
∑

uv∈E(G)

du + dv

m

⎞

⎠
−1/2

= m
√

m
√ ∑

uv∈E(G)

(du + dv)
= m

√
m√

M1(G)

with equality if and only if du + dv is a constant for every edge uv of G. ��
There are lots of upper bounds for the first Zagreb index [45–48], from which we

may deduce lower bounds for χ by Proposition 2. We give such examples in (a)–(d).

(a) Let G be a graph with m edges. For any edge uv of G, du + dv ≤ m + 1 with
equality if and only if every other edge of G is adjacent to the edge uv. Then

M1(G) ≤
∑

uv∈E(G)

(m + 1) = m(m + 1),

and thus

χ(G) ≥ m√
m + 1

with equality when G has no isolated vertices if and only if G has no two indepen-
dent edges, i.e., G = Sm+1 or K3. (This also follows directly from the definition
of χ .)
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(b) Let G be a graph with n vertices and m ≥ 1 edges. Then [45,46]

M1(G) ≤ m

(
2m

n − 1
+ n − 2

)

with equality if and only if G = Kn , Sn or K1 ∪ Kn−1, and thus

χ(G) ≥
√

n − 1m√
2m + (n − 1)(n − 2)

with equality if and only if G = Kn , Sn or K1 ∪ Kn−1.
(c) Let G be a graph with n vertices, m edges, maximum degree � and minimum

degree δ. Then [47]

M1(G) ≤ 2m(� + δ) − n�δ

with equality if and only if G has only two types of degrees � and δ, and thus

χ(G) ≥ m
√

m√
2m(� + δ) − n�δ

with equality if and only if one vertex has degree � and the other vertex has degree
δ for every edge.

(d) Let G be a triangle- and a quadrangle-free graph. Then [48]

M1(G) ≤ n(n − 1)

with equality if and only if G is Sn or a Moore graph of diameter 2, and thus

χ(G) ≥ m
√

m√
n(n − 1)

with equality if and only if G is Sn or a Moore graph of diameter 2.

Bollobás and Erdös [9] showed that if G is a graph with n vertices containing no
isolated vertices, then R(G) ≥ √

n − 1 with equality if and only if G = Sn . For the
index χ , we note χ(P2 ∪ P2) = √

2 < χ(S4) = 3
2 . As the following proposition

shows, this is the only exception.

Proposition 3 Let G be a graph with n ≥ 5 vertices containing no isolated vertices.
Then

χ(G) ≥ n − 1√
n

with equality if and only if G = Sn.
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Proof First suppose that G is a connected graph. Let m be the number of edges of G.
Then m ≥ n − 1. Obviously, m√

m+1
is increasing for m ≥ 1. From item (a) above,

χ(G) ≥ m√
m+1

≥ n−1√
n

with equality if and only if G = Sm+1 and m = n − 1, i.e.,
G = Sn .

Now suppose that G is disconnected with components Gi , i = 1, 2, . . . , k where
k ≥ 2. Let ni be the number of vertices of Gi . Then ni ≥ 2, and

∑k
i=1 ni = n and

χ(G) =
k∑

i=1

χ(Gi ) ≥
k∑

i=1

ni − 1√
ni

.

If every ni is equal to 2 for i = 1, 2, . . . , k, then χ(G) ≥ ∑k
i=1

ni −1√
ni

= n
2
√

2
> n−1√

n
for n ≥ 6. Suppose that at least one of ni for i = 1, 2, . . . , k is at least 3, say n1 ≥ 3.
For l(x) = x−1√

x
with x ≥ 1, l ′′(x) < 0, and then l(x) − l(x − 2) is decreasing when

x ≥ 3, which implies that n1+n2−1√
n1+n2

− n1+n2−3√
n1+n2−2

≤ 4√
5

− 2√
3

< 1√
2

, and thus

n1 − 1√
n1

+ n2 − 1√
n2

= (√
n1 + √

n2
) (

1 − 1√
n1n2

)

≥
(√

n1 + n2 − 2 + √
2
) (

1 − 1√
2(n1 + n2 − 2)

)

= n1 + n2 − 3√
n1 + n2 − 2

+ 1√
2

>
n1 + n2 − 1√

n1 + n2
.

It follows that χ(G) > n1+n2+n3−1√
n1+n2+n3

+ ∑k
i=4

ni −1√
ni

> · · · >
n1+···+nk−1√

n1+···+nk
= n−1√

n
. The

result follows. ��
Proposition 4 Let G be a triangle-free graph with n vertices and m ≥ 1 edges. Then

χ(G) ≥ m√
n

with equality if and only if G is a complete bipartite graph.

Proof For any edge uv of G, du + dv ≤ n and thus

χ(G) ≥
∑

uv∈E(G)

1√
n

= m√
n

with equality if and only if du + dv = n for every edge uv of G, i.e., G is a complete
bipartite graph. ��
Proposition 5 Let G be a graph with n vertices. Then

χ(G) + χ(G) ≥ n
√

n − 1

2
√

2
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with equality if and only if G = Kn or G = Kn.

Proof Let m and m be respectively the numbers of edges of G and G. Then

χ(G) + χ(G) =
∑

uv∈E(G)

(du + dv)
−1/2 +

∑

uv∈E(G)

(n − 1 − du + n − 1 − dv)
−1/2

≥ m (2n − 2)−1/2 + m (2n − 2)−1/2

= (m + m)
1√

2(n − 1)
= n

√
n − 1

2
√

2

with equality if and only if either du = dv = n − 1 for every edge uv ∈ E(G) or
E(G) = ∅, i.e., G = Kn or G = Kn . ��

Let G be a graph with m edges. A trivial upper bound for χ(G) is χ(G) ≤ m√
2

with
equality if and only if G consists of m copies of K2 and arbitrary number of isolated
vertices.

Proposition 6 Let G be a graph with n vertices and m ≥ 1 edges. Then χ(G) <
√

nm
2 .

Proof By the Cauchy-Schwarz inequality,
∑

u∈V (G)

√
du ≤

√
n

∑
u∈V (G) du and then

it is easily seen that

χ(G) = 1

2

∑

u∈V (G)
du>0

∑

v∈�(u)

1√
du + dv

<
1

2

∑

u∈V (G)
du>0

∑

v∈�(u)

1√
du

= 1

2

∑

u∈V (G)
du>0

1√
du

∑

v∈�(u)

1 = 1

2

∑

u∈V (G)
du>0

du√
du

= 1

2

∑

u∈V (G)

√
du ≤ 1

2

√
n

∑

u∈V (G)

du =
√

nm

2
.

This proves the result. ��
Recall that [49] if G is a graph with n ≥ 2 vertices, then R(G) ≤ n

2 with equality if
and only if every component is a regular graph with at least two vertices. However, the
range of the sum-connectivity indices are much wider than the product-connectivity
index, as we can see from the following proposition.

Proposition 7 Let G be a graph with n vertices and maximum degree �. Then

χ(G) ≤ n
√

�

2
√

2
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with equality if and only if G is regular of degree �. Furthermore,

χ(G) ≤ n
√

n − 1

2
√

2

with equality if and only if G = Kn.

Proof It is trivial for � = 0, 1. Suppose that � ≥ 2. We may also assume that G has no
isolated vertices. Denote by xi j the number of edges of G that connect vertices of degree
i and j , where 1 ≤ i ≤ j ≤ �. Note that xi j = x ji . Then χ(G) = ∑

1≤i≤ j≤�

xi j√
i+ j

.

Denote by ni the number of vertices of G with degree i . Then
∑�

i=1 ni = n and∑�
j=1 xi j + xii = ini for i = 1, 2, . . . , �. From these relations, we have n� =

n −∑�−1
i=1 ni =n −∑�−1

i=1
1
i

(∑�
j=1 xi j + xii

)
, x�� = 1

2

(
�n� − ∑�−1

j=1 x� j

)
, and

x�� = �
2

(
n − ∑�−1

i=1
∑�

j=1
xi j
i − ∑�−1

i=1
xii
i

)
− 1

2

∑�−1
j=1 x� j . It follows that

χ(G) =
∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

xi j√
i + j

+ x��√
2�

=
∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

xi j√
i + j

+ 1√
2�

⎡

⎣�

2

⎛

⎝n −
�−1∑

i=1

�∑

j=1

xi j

i
−

�−1∑

i=1

xii

i

⎞

⎠ − 1

2

�−1∑

j=1

x�j

⎤

⎦

= n
√

�

2
√

2
+

∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

xi j√
i + j

−
√

�

2
√

2

⎛

⎝
�−1∑

i=1

�∑

j=1

xi j

i
+

�−1∑

j=1

x�j

�
+

�−1∑

i=1

xii

i

⎞

⎠

= n
√

�

2
√

2
+

∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

xi j√
i + j

−
√

�

2
√

2

∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

(
1

i
+ 1

j

)
xi j

= n
√

�

2
√

2
+

∑

1 ≤ i ≤ j ≤ �

(i, j) 
= (�, �)

[
1√

i + j
−

√
�

2
√

2

(
1

i
+ 1

j

)]
xi j .

For 1 ≤ i ≤ j ≤ � and (i, j) 
= (�,�), it is easily seen that

√
�

2
√

2

√
i + j

(
1

i
+ 1

j

)
≥

√
�

2
√

2

√
i + j

2√
i j

=
√

�√
2

√
1

i
+ 1

j
>

√
�√
2

√
2

�
= 1

which implies that 1√
i+ j

−
√

�

2
√

2

(
1
i + 1

j

)
< 0. Therefore, χ(G) ≤ n

√
�

2
√

2
with equality

if and only if xi j = 0 for 1 ≤ i ≤ j ≤ � and (i, j) 
= (�,�), i.e., all vertices
are of degree �. This proves the first part of the proposition. The second part of the
proposition follows from the first part. ��
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Let G be a graph with n ≥ 2 vertices. From Proposition 7, we have χ(G)+χ(G) <
n
√

n−1√
2

.

4 The sum-connectivity indices of trees

By Proposition 3, the star is the unique n-vertex tree with the minimum sum-
connectivity index. In the following we go further. We need two lemmas.

Lemma 1 Let x be a positive real number.

(i) The function f (x) = 1√
x+2

+ x−2√
x+1

− x−2√
x

is decreasing for x > 0.

(ii) The function g(x) = 1√
x+2

+ x−1√
x+1

+ 1√
3
+ n−x−2

2 is decreasing for 2 ≤ x ≤ n−2.

(iii) The function h(x) = x√
x+2

+ n−x−2√
n−x

+ 1√
n

is decreasing for n−2
2 ≤ x ≤ n − 3.

Proof (i) Let f1(x) = 1√
x+1

+ x−2√
x

. Then f (x) = f1(x + 1) − f1(x). Since

f1
′′(x) = 3

4 (x + 1)−5/2 − 1
4 x−3/2 − 3

2 x−5/2 < 0, f1
′(x) is decreasing with x ,

and then f ′(x) = f ′
1(x + 1)− f ′

1(x) < 0, implying that f (x) is decreasing with
x .

(ii) It is easily seen that g(x+1)−g(x) =
(

1√
x+3

− 1
2

)
+(x−1)

(
1√
x+2

− 1√
x+1

)
<

0, which implies that g(x) is decreasing with x .
(iii) Note that h(x) = √

x + 2+√
n − x − 2√

x+2
− 2√

n−x
+ 1√

n
. Let a = √

x + 2 and

b = √
n − x . Then a2 + b2 = n + 2. Thus h(x) = a + b − 2

a − 2
b + 1√

n
= (a +

b)
(
1 − 2

ab

) + 1√
n

. Let a1 = √
x + 3 and b1 = √

n − x − 1. Then a1b1 < ab,

a1 + b1 < a + b, and thus h(x + 1) − h(x) = (a1 + b1)
(

1 − 2
a1b1

)
− (a +

b)
(
1 − 2

ab

)
< 0, implying that h(x) is decreasing with x for n−2

2 ≤ x ≤ n − 3.
��

For integers n, p with 2 ≤ p ≤ n −1, let Sn,p be the tree formed by attaching p−1
pendant vertices to an end vertex of the path Pn−p+1, see Fig. 1. Evidently, Sn,2 = Pn

and Sn,n−1 = Sn .

Lemma 2 Let T be a tree with n vertices and p pendant vertices, where 2 ≤ p ≤ n−2.
If u is a pendant vertex being adjacent to the vertex v, then

χ(T ) − χ(T − u) ≥ p − 2√
p + 1

+ 1√
p + 2

− p − 2√
p

with equality if and only if T = Sn,p and dv = p.
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Fig. 1 The tree Sn,p

Proof Note that p ≤ n − 2. Then �(v)\{u} contains some vertex of degree at least
two. It is easily seen that

χ(T ) − χ(T − u) = 1√
dv + 1

−
∑

w∈�(v)\{u}

(
1√

dv − 1 + dw

− 1√
dv + dw

)

≥ 1√
dv + 1

−
(

1√
dv − 1 + 2

− 1√
dv + 2

)

−(dv − 2)

(
1√

dv − 1 + 1
− 1√

dv + 1

)

= 1√
dv + 2

+ dv − 2√
dv + 1

− dv − 2√
dv

with equality if and only if of the dv neighbors of v, one has degree two, and others
are pendant vertices. Since dv ≤ p, we have by Lemma 1 (i) that

χ(T ) − χ(T − u) ≥ 1√
p + 2

+ p − 2√
p + 1

− p − 2√
p

with equality if and only if of the dv = p neighbors of v, one has degree two, and
others are pendant vertices, i.e., T = Sn,p and dv = p. ��

The product-connectivity index for trees with given numbers of vertices and pendant
vertices has been studied in [50].

Proposition 8 Let T be a tree with n vertices and p pendant vertices, where 3 ≤ p ≤
n − 2. Then

χ(T ) ≥ 1√
p + 2

+ p − 1√
p + 1

+ 1√
3

+ n − p − 2

2

with equality if and only if T = Sn,p.

Proof We argue by induction on n. It is trivial for n = 5. Suppose that n ≥ 6. Let u be
a pendant vertex being adjacent to the vertex v. First suppose that dv = 2. If p = 3,
then such u and v always exist. Then the unique vertex w in �(v)\{u} has degree at
least two, and thus

χ(T ) − χ(T − u) = 1√
dw + 2

+ 1√
3

− 1√
dw + 1

≥ 1√
2 + 2

+ 1√
3

− 1√
2 + 1

= 1

2

with equality if and only if dw = 2. In this case T − u possesses p pendant vertices.
If p = n − 2, then T − u is a star, and thus T = Sn,n−2. If p ≤ (n − 1) − 2, then by
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Fig. 2 The tree Tn,a

Fig. 3 The trees in
Proposition 9

the induction hypothesis to T − u,

χ(T ) ≥ χ(T − u) + 1

2
≥ 1√

p + 2
+ p − 1√

p + 1
+ 1√

3
+ n − p − 2

2

with equality if and only if T − u = Sn−1,p and dw = 2, i.e., T = Sn,p.
Now suppose that dv ≥ 3 and p > 3. Then T −u possesses p −1 pendant vertices.

By Lemma 2 and the induction hypothesis to T − u,

χ(T ) ≥ χ(T − u) + 1√
p + 2

+ p − 2√
p + 1

− p − 2√
p

≥
(

1√
p + 1

+ p − 2√
p

+ 1√
3

+ n − p − 2

2

)
+ 1√

p + 2
+ p − 2√

p + 1
− p − 2√

p

= 1√
p + 2

+ p − 1√
p + 1

+ 1√
3

+ n − p − 2

2

with equality if and only if T − u = Sn−1,p−1 and dv = p, i.e., T = Sn,p. ��
Any n-vertex tree T with n − 2 pendant vertices may be formed by attaching a

and n − 2 − a pendant vertices to the two vertices of the path P2, respectively, for
n−2

2 ≤ a ≤ n−3, for which we denote by Tn,a , see Fig. 2. Evidently, Tn,n−3 = Sn,n−2.

Proposition 9 Sn,n−1 = Sn, Sn,n−2 = Tn,n−3 are respectively the unique n-ver-
tex trees with the minimum and second minimum sum-connectivity indices n−1√

n
and

n−3√
n−1

+ 1√
n

+ 1√
3

for n ≥ 4, while Tn,n−4 is the unique n-vertex tree with the third

minimum sum-connectivity index n−4√
n−2

+ 1√
n

+ 1 for n ≥ 6 (Fig. 3).

Proof The first part follows from Propositions 3, 8 and Lemma 1 (ii). Let T be a tree
with n vertices and p pendant vertices, where 2 ≤ p ≤ n −2 and n ≥ 6. If p = n −2,
then T is of the form Tn,a for some a with n−2

2 ≤ a ≤ n − 3, for which we have by
Lemma 1 (iii) that

χ(Tn,a) = h(a) = a√
a + 2

+ n − a − 2√
n − a

+ 1√
n
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is decreasing for n−2
2 ≤ a ≤ n − 3, and thus the sum-connectivity indices of n-vertex

trees with n − 2 pendant vertices may be ordered as

χ
(
Tn,n−3

)
< · · · < χ

(
Tn,�(n−2)/2�

)
.

On the other hand, if p ≤ n − 3, then by Proposition 8 and Lemma 1 (ii),

χ(T ) ≥ g(n − 3) = 1√
n − 1

+ n − 4√
n − 2

+ 1√
3

+ 1

2
>

n − 4√
n − 2

+ 1√
n

+ 1 = χ(Tn,n−4).

Thus, Tn,n−4 is the unique tree with the third minimum sum-connectivity index. ��

We note that by Proposition 8 and Lemma 1 (ii), Sn,n−d+1 is the unique n-vertex
tree of diameter d where 3 ≤ d ≤ n − 2 with the minimum sum-connectivity index.

In [49], the n-vertex trees with the maximum and second maximum product-con-
nectivity indices have already been determined. Now we determine the n-vertex trees
with the maximum, second maximum and third maximum sum-connectivity indices.

Proposition 10 For n ≥ 4, Pn is the unique n-vertex tree with the maximum sum-
connectivity index n−3

2 + 2√
3

, and for n ≥ 7, the trees with a single vertex of degree

three, adjacent to three vertices of degree two and without vertices of degree at least
four are the unique n-vertex trees with the second maximum sum-connectivity index
n−7

2 + 3√
3
+ 3√

5
, the trees with a single vertex of degree three, adjacent to two vertices

of degree two and one vertex of degree one, and without vertices of degree at least
four are the unique n-vertex trees with the third maximum sum-connectivity index
n−5

2 + 2√
3

+ 2√
5

.

Proof Suppose that Q is a connected graph with at least two vertices. For a ≥ b ≥ 1,
let G1 be the graph obtained from Q by attaching two paths Pa and Pb to u ∈ V (Q),
and G2 the graph obtained from Q by attaching a path Pa+b to u. Let d1 be the degree
of u in G1, and dx the degree of x in Q. If a = 1 and b = 1, then

χ(G2) − χ(G1) =
⎛

⎝ 1√
3
+ 1√

d1+1
+

∑

xu∈E(Q)

1√
d1 − 1 + dx

⎞

⎠ −
⎛

⎝ 2√
d1 + 1

+
∑

xu∈E(Q)

1√
d1 + dx

⎞

⎠

=
(

1√
3

− 1√
d1 + 1

)
+

∑

xu∈E(Q)

(
1√

d1 − 1 + dx
− 1√

d1 + dx

)
> 0.

If a ≥ 2 and b = 1, then

χ(G2)−χ(G1) =
(

1

2
− 1√

d1 + 2

)
+

∑

xu∈E(Q)

(
1√

d1 − 1 + dx
− 1√

d1 + dx

)
>0.
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If a ≥ 2 and b ≥ 2, then as it is may be checked that 1√
d1+1

− 2√
d1+2

is increasing for
(

1 + 1
d1+1

)3 ≤ 4, and this is obvious for d1 ≥ 3, we have

χ(G2) − χ(G1) =
(

1 − 1√
3

+ 1√
d1 + 1

− 2√
d1 + 2

)
+

∑

xu∈E(Q)

(
1√

d1 − 1 + dx
− 1√

d1 + dx

)

≥ 1 − 1√
3

+ 1√
d1 + 1

− 2√
d1 + 2

≥ 1 − 1√
3

+ 1√
3 + 1

− 2√
3 + 2

> 0.

It follows that χ(G1) < χ(G2).
Let T be an n-vertex tree with n ≥ 4. If T 
= Pn , then by applying the above

transformation to the tree T , we have χ(T ) < χ(Pn). Thus, Pn is the unique n-vertex
tree with the maximum sum-connectivity index n−3

2 + 2√
3

.
If the maximum degree of T is at least four, or the maximum degree is three and there

are at least two vertices of degree three, then by applying the above transformation
to the tree T , we find that there is an n-vertex tree T ∗ with exactly one vertex, say v

of maximum degree three such that χ(T ) < χ(T ∗). If the degrees of the neighbors
of v are 1, 1 and 2, then n ≥ 5, χ(T ∗) = n−3

2 + 1√
3

+ 1√
5
. If the degrees of the

neighbors of v are 1, 2 and 2, then n ≥ 6, χ(T ∗) = n−5
2 + 2√

3
+ 2√

5
. If the degrees

of the neighbors of v are 2, 2 and 2, then n ≥ 7, χ (T ∗) = n−7
2 + 3√

3
+ 3√

5
. For

n ≥ 7, n−7
2 + 3√

3
+ 3√

5
> n−5

2 + 2√
3

+ 2√
5

> n−3
2 + 1√

3
+ 1√

5
, and thus the

trees with a single vertex of degree three, adjacent to three vertices of degree two and
without vertices of degree at least four are the unique n-vertex trees with the second
maximum sum-connectivity index n−7

2 + 3√
3

+ 3√
5

.
If there are at least two vertices of degree three in T , then by applying the above

transformation to the tree T , we have either an n-vertex tree T ∗ with exactly one vertex
of maximum degree three such that χ(T ) < χ(T ∗) ≤ n−5

2 + 2√
3
+ 2√

5
or otherwise, an

n-vertex tree T ∗ with exactly two vertices of maximum degree three, each is adjacent
to two vertices of degree two and then χ(T ) ≤ χ(T ∗) = n−10

2 + 4√
3

+ 4√
5

+ 1√
6

for
n ≥ 10 if they are adjacent, and each is adjacent to three vertices of degree two and
then χ(T ) ≤ χ(T ∗) = n−11

2 + 4√
3

+ 6√
5

for n ≥ 11 if they are not adjacent, and thus

χ(T ) < n−5
2 + 2√

3
+ 2√

5
. If the maximum degree of T is at least four, then by applying

the above transformation to the tree T , we have either an n-vertex tree T ∗ with exactly
one vertex of maximum degree three such that χ(T ) < χ(T ∗) ≤ n−5

2 + 2√
3

+ 2√
5

or

otherwise, an n-vertex tree T ∗ for n ≥ 9 with exactly one vertex of maximum degree
four, adjacent to four vertices of degree two, and without vertices of degree three such
that χ(T ) ≤ χ(T ∗) = n−9

2 + 4√
6

+ 4√
3

< n−5
2 + 2√

3
+ 2√

5
. It follows that for n ≥ 7,

the trees with a single vertex of degree three, adjacent to two vertices of degree two
and one vertex of degree one, and without vertices of degree at least four are the unique
n-vertex trees with the third maximum sum-connectivity index n−5

2 + 2√
3

+ 2√
5
. ��
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5 The sum-connectivity indices of molecular trees

In this section we deal with molecular graphs representing hydrocarbons [43,51] with
emphasis on molecular trees [43]. Molecular graphs in this case are connected graphs
with maximum degree at most four. We have already determined n-vertex trees with
the maximum, second maximum and third maximum values of the sum-connectivity
index for n ≥ 7. All such trees are molecular trees (actually trees with degree at most
three). This leads us to think about what happens for n-vertex molecular trees with
small sum-connectivity indices.

Gutman et al. [52] determined molecular trees with the minimum, second minimum
and third minimum, and the maximum, second maximum and third maximum prod-
uct-connectivity indices. This was extended to general molecular graphs with n ≥ 5
vertices and m edges, n −1 ≤ m ≤ 2n, in [53,54]. Denote by xi j the number of edges
of G that connect vertices of degree i and j , where 1 ≤ i ≤ j ≤ 4. Gutman [53]
deduced the following relations:

x14 = 4n − 2m

3
− 4

3
x12 − 10

9
x13 − 2

3
x22 − 4

9
x23 − 1

3
x24 − 2

9
x33 − 1

9
x34,

x44 = 5m − 4n

3
+ 1

3
x12 + 1

9
x13 − 1

3
x22 − 5

9
x23 − 2

3
x24 − 7

9
x33 − 8

9
x34.

Substituting these into χ(G) = x12√
3

+ x13
2 + x14√

5
+ x22

2 + x23√
5

+ x24√
6

+ x33√
6

+ x34√
7

+ x44√
8

to get

χ(G) = 4n − 2m

3
√

5
+ 5m − 4n

3
√

8
+

(
1√
3

− 4

3
√

5
+ 1

3
√

8

)
x12

+
(

1

2
− 10

9
√

5
+ 1

9
√

8

)
x13 +

(
1

2
− 2

3
√

5
− 1

3
√

8

)
x22

+
(

1√
5

− 4

9
√

5
− 5

9
√

8

)
x23 +

(
1√
6

− 1

3
√

5
− 2

3
√

8

)
x24

+
(

1√
6

− 2

9
√

5
− 7

9
√

8

)
x33 +

(
1√
7

− 1

9
√

5
− 8

9
√

8

)
x34

with positive coefficients for x12, x13, x22, x23, x24, x33, x34. Similarly, from [53]

x12 = 2(n − m) − 2

3
x13 − 1

2
x14 + 1

3
x23 + 1

2
x24 + 2

3
x33 + 5

6
x34 + x44,

x22 = 3m − 2n − 1

3
x13 − 1

2
x14 − 4

3
x23 − 3

2
x24 − 5

3
x33 − 11

6
x34 − 2x44,

we have
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χ(G) = 2(n − m)√
3

+ 3m − 2n

2
−

(
2

3
√

3
+ 1

6
− 1

2

)
x13

−
(

1

2
√

3
+ 1

4
− 1√

5

)
x14 −

(
2

3
− 1

3
√

3
− 1√

5

)
x23

−
(

3

4
− 1

2
√

3
− 1√

6

)
x24 −

(
5

6
− 2

3
√

3
− 1√

6

)
x33

−
(

11

12
− 5

6
√

3
− 1√

7

)
x34 −

(
1 − 1√

3
− 1√

8

)
x44

with negative coefficients for x13, x14, x23, x24, x33, x34, x44. Thus we have:

Proposition 11 Let G be a molecular graph with n ≥ 5 vertices and m edges with
n − 1 ≤ m ≤ 2n. Then

4

3

(
1√
5

− 1√
8

)
n + 1

3

(
5√
8

− 2√
5

)
m ≤ χ(G) ≤

(
2√
3

− 1

)
n +

(
3

2
− 2√

3

)
m

with left equality if and only if G has only vertices of degree one and four, and with
right equality if and only if G is either a path or a cycle.

Now suppose that G is a tree, i.e., m = n − 1. Let F = χ(G) −
(

2n+2
3
√

5
+ n−5

3
√

8

)
.

Then

F = 0.098916605x12 + 0.042379715x13 + 0.084006473x22 + 0.052033447x23

+ 0.023474832x24 + 0.033881521x33 + 0.014004393x34.

Let ni be the number of vertices of degree i , i = 1, 2, 3, 4. Then 2n2 = x12 + 2x22 +
x23 + x24, 3n3 = x13 + x23 + 2x33 + x34. If n2 = 3 and n3 = 0, then

F = 0.098916605x12 + 0.084006473x22 + 0.023474832x24

≥ 0.023474832 × 6 > 0.12.

If n2 = 2 and n3 = 1, then

F ≥ 0.023474832 × 4 + 0.014004393 × 3 > 0.12.

If n2 = 1 and n3 = 2, then

F ≥ 0.023474832 × 2 + 0.014004393 × 6 > 0.12.

If n2 = 0 and n3 = 3, then

F ≥ 0.014004393 × 9 > 0.12.
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In summary, if n2 + n3 = 3, then F > 0.12. If n2 + n3 = s ≥ 4, the by similar
argument it is easily checked that F > 0.12.

For n2 + n3 = 0, 1, 2, the graphical feasible combinations of x12, x13, x22, x23,

x24, x33, x34, for which F < 0.12 are listed below, where n ≡ k(mod3):

n2 n3 Non-zero xi j F k n

0 0 0 2 n ≥ 5

1 1 x24 = 2, x34 = 3 0.088963 2 n ≥ 17

1 1 x24 = 1, x34 = 2, x23 = 1 0.103517 2 n ≥ 14

0 1 x34 = 3 0.042013 1 n ≥ 13

0 1 x34 = 2,, x13 = 1 0.070389 1 n ≥ 10

2 0 x24 = 4 0.093899 1 n ≥ 13

0 1 x34 = 1, x13 = 2 0.098764 1 n ≥ 7

1 0 x24 = 2 0.046950 0 n ≥ 9

0 2 x34 = 6 0.084026 0 n ≥ 21

0 2 x34 = 4, x33 = 1 0.089899 0 n ≥ 18

0 2 x34 = 5, x13 = 1 0.112402 0 n ≥ 18

Let MT (n) be the set of molecular trees with n vertices. From the results above
(the smaller F , the smaller χ -value), we have:

Proposition 12 (i) If n ≡ 2(mod3), then among trees in MT (n),
(a) for n ≥ 5 the ones with only degrees one and four are the unique trees with

the minimum sum-connectivity index 2n+2
3
√

5
+ n−5

3
√

8
;

(b) for n ≥ 17 the ones with a single vertex of degree two adjacent to two
vertices of degree four, and a single vertex of degree three adjacent to three
vertices of degree four are the unique trees with the second minimum sum-
connectivity index 2n−1

3
√

5
+ n−17

3
√

8
+ 2√

6
+ 3√

7
;

(c) for n ≥ 17 the ones with a single vertex of degree two adjacent to a ver-
tex of degree three and a vertex of degree four, and with a single vertex of
degree three adjacent to one vertex of degree two and two vertices of degree
four are the unique trees with the third minimum sum-connectivity index
2n−1
3
√

5
+ n−14

3
√

8
+ 1√

5
+ 1√

6
+ 2√

7
(when n = 14, there is only one such graph

which achieves the second minimum sum-connectivity index).
(ii) If n ≡ 1(mod3), then among trees in MT (n) for n ≥ 13,

(a) the ones with a single vertex of degree three adjacent to three vertices of
degree four, and without vertices of degree two are the unique trees with the
minimum sum-connectivity index 2n+1

3
√

5
+ n−13

3
√

8
+ 3√

7
;

(b) the ones with a single vertex of degree three adjacent to one vertex of degree
one and two vertices of degree four, and without vertices of degree two are
the unique trees with the second minimum sum-connectivity index 2n−2

3
√

5
+

n−10
3
√

8
+ 1

2 + 2√
7

(when n = 10, there is only one such graph which achieves

the minimum sum-connectivity index);
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(c) the ones with two vertices of degree two adjacent to four vertices of degree
four, and without vertices of degree three are the unique trees with the third
minimum sum-connectivity index 2n−2

3
√

5
+ n−13

3
√

8
+ 4√

6
.

(iii) If n ≡ 0(mod3), then among trees in MT (n),
(a) for n ≥ 9 the ones with a single vertex of degree two adjacent to two vertices

of degree four, and without vertices of degree three are the unique trees with
the minimum sum-connectivity index 2n

3
√

5
+ n−9

3
√

8
+ 2√

6
;

(b) for n ≥ 21 the ones with two vertices of degree three, each adjacent to three
vertices of degree four, and without vertices of degree two are the unique
trees with the second minimum sum-connectivity index 2n

3
√

5
+ n−21

3
√

8
+ 6√

7
;

(c) for n ≥ 21 the ones with two adjacent vertices of degree three adjacent
to four vertices of degree four together, and without vertices of degree two
are the unique trees with the third minimum sum-connectivity index 2n

3
√

5
+

n−18
3
√

8
+ 1√

6
+ 4√

7
(when n = 18, there is only one such graph which achieves

the second minimum sum-connectivity index).

From the discussion previous to the proposition, we also know that if n ≡ 1
(mod 3), then the trees with n2 = 0, n3 = 1, x34 = 1, x13 = 2 are the unique trees
with the minimum sum-connectivity index when n = 7, the second minimum sum-
connectivity index when n = 10, and the fourth minimum sum-connectivity index
when n ≥ 13; if n ≡ 0(mod 3), then when n = 18, the trees with n2 = 0, n3 =
2, x34 = 5, x13 = 1 are the unique trees with the third minimum sum-connectivity
index. Therefore, we have determined the n-vertex molecular trees with the minimum
sum-connectivity indices for n = 5 and n ≥ 7, with the second minimum sum-connec-
tivity indices for n = 10, 13, 14 and n ≥ 16, with the third minimum sum-connectivity
indices for n = 13, and n ≥ 16.
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12. J. Rada, C. Uzcátegui, Randić ordering of chemical trees. Discr. Appl. Math. 150, 232–250 (2005)
13. X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors (University
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